
Michele Arigliani, Mario C. Canciani, Giovanni Mottini, Michele Altomare, Andrea Magnolato, Sofia Vanda Loa Clemente, Leon Tshiolo, Paola Cogo, and Philip H. Quanjer

Department of Clinical and Experimental Medical Sciences, Unit of Pediatrics, University Hospital of Udine, Udine, Italy; International Health Cooperation Project, University Campus Bio-Medico, Rome, Italy; “Sapienza” University of Rome, Rome, Italy; University of Trieste, Italy; Hospital Divina Providencia, Luanda, Angola; Service de Pédriatrie, Centre Hospitalier Monkole and Centre de Formation et d’Appui Sanitaire, Kinshasa, Democratic Republic of the Congo; and Department of Pulmonary Diseases and Department of Paediatrics–Pulmonary Diseases, Erasmus Medical Centre, Erasmus University, Rotterdam, the Netherlands

Abstract

Rationale: Despite the high burden of respiratory disease, no spirometry reference values for African children are available.

Objectives: Investigate whether the Global Lung Initiative (GLI-2012) reference values for spirometry are appropriate for children in sub-Saharan Africa and assess the impact of malnutrition on lung function.

Methods: Anthropometry and spirometry were obtained in children aged 6 to 12 years from urban and semiurban schools in three African countries. Spirometry z-scores were derived using the GLI-2012 prediction equations for African Americans. Thinness (body mass index z-score < -2) was a surrogate for malnutrition. Spirometry outcomes were compared with those of African American children from the third National Health and Nutrition Survey.

Measurements and Main Results: Spirometry data were analyzed from 1,082 schoolchildren (51% boys) aged 6.0 to 12.8 years in Angola (n = 306), Democratic Republic of the Congo (n = 377), and Madagascar (n = 399). GLI-2012 provided a good fit with mean (SD) z-scores of -0.11 (0.83) for FEV₁, -0.08 (0.86) for FVC, and -0.07 (0.83) for FEV₁/FVC. Due to low scatter, the fifth centile corresponded to -1.3 z-scores in boys and -1.5 z-scores in girls. Malnourished African children had a normal FEV₁/FVC ratio but significant reductions of ~0.5 z-scores (~5%) in FEV₁ and FVC compared with African American peers from the third National Health and Nutrition Survey. Children in Angola had the lowest, and those in Madagascar had the highest, zFEV₁ and zFVC.

Conclusions: The results of this study support the use of GLI-2012 reference values for schoolchildren in sub-Saharan Africa. Malnutrition affects body growth, leading to a proportionately smaller FEV₁ and FVC without respiratory impairment, as shown by the normal FEV₁/FVC ratio.

Keywords: spirometry; pediatrics; reference values; Africa; malnutrition

Interpretation of pulmonary function test results requires considering age, sex, height, and ethnic group. In 2012, the Global Lung Function Initiative (GLI-2012) produced a prediction equation model for spirometry that fits four ethnic groups (1): white, African American, Southeast Asian, and Northeast Asian, plus a provisional “other” group representing other populations and individuals of mixed ethnic origin. That study confirmed that for the same age, height, and sex, people of European ancestry have larger lung volumes than African Americans (2–4), reflecting genetically and environmentally determined differences in body frame (black people have larger limbs relative to stature [5–7], which has a genetic basis [7, 8]). GLI-2012 does not fit a North African population with Eurasian and sub-Saharan ancestry (9). It is unknown whether the

(Received in original form April 5, 2016; accepted in final form August 25, 2016)

Author Contributions: M.A. conceived the study, performed data collection, interpreted data, and wrote the manuscript; M.C.C. conceived the study and contributed to the manuscript; M.A., G.M., A.M., S.V.L.C., and L.T. performed data collection and contributed to the manuscript; P.C. interpreted data and contributed to the manuscript; and P.H.Q. performed analysis and interpreted data and wrote the manuscript with M.A. All authors approved the final draft of the manuscript.

Correspondence and requests for reprints should be addressed to Michele Arigliani, M.D., AOUD Udine, P.zaale S. Maria Misericordia 1, Pediatría, Udine 33100, Italy. E-mail: michelearigliani@gmail.com

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org

Am J Respir Crit Care Med Vol 194, Iss 7, pp 1-8, 2016

Copyright © 2016 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.201604-0693OC on August 26, 2016

Internet address: www.atsjournals.org
GLI-2012 reference values for African Americans are appropriate for sub-Saharan African people (1). A good fit might be expected because of the shared genetic background. Two studies in adults (10, 11) and one in children (12), respectively from Rwanda, Madagascar, and Nigeria, suggest that lung volumes in these populations are comparable to those in African Americans. There are relevant differences between African American and African children in terms of genetic mixing (13, 14), average level of affluence, healthcare access, and exposure to air pollutants. Many children living in sub-Saharan Africa suffer the consequences of poverty and impaired nutritional status. The impact of these factors on lung function in children is controversial. Some studies found a relationship between low socioeconomic status (SES), malnutrition, and lung volumes (15–22), but others did not (23–25). Moreover, after considering differences in body frame and genetic ancestry, disparities in SES explain only a small proportion of differences in lung function (6, 7, 17, 18, 23). This suggests that SES and nutrition act through an effect on body growth (26, 27). In sub-Saharan Africa, almost 90% of the people rely on biomass fuels, mainly wood, to meet their domestic energy demands (28). The solid fuel smoke causes high levels of indoor air pollution. Children in urban areas are also exposed to higher levels of outdoor air pollution than in American cities (29). These exposures increase the risk of serious acute respiratory infections in young children (28) and may permanently affect lung health and spirometry outcomes (30). Therefore, the “GLI-2012 black” prediction equations might not fit African children. Appropriate spirometry reference data for sub-Saharan African children are urgently needed, considering the high burden of childhood respiratory disease.

This study aimed to test the applicability of GLI-2012 prediction equations for African American children to data collected cross-sectionally from primary school children in Angola (South-West Africa), Democratic Republic of Congo (DR Congo, Central Africa), and Madagascar (southeast African island). Secondary aims were to evaluate the impact of malnutrition on lung function and compare respiratory outcomes in African children and African American peers from NHANES III (National Health and Nutrition Examination Survey III) (31). Some of the results of this study have been previously reported in abstract form (32, 33).

Methods
This prospective cross-sectional multicenter study was conducted in Angola, DR Congo, and Madagascar by the principal investigator (PI) and various coinvestigators in different countries, using identical equipment, techniques, and quality control criteria.

The study was approved by the Ethics Committee of the University Campus Bio-Medico of Rome, Italy and by the respective local committees of collaborating hospitals in the three African countries. Parental written consent and verbal assent from each child were obtained in their first language before assessments.

Subjects
Appreciably healthy school children 6 to 12 years old were eligible. Data were collected between October 2012 and May 2015 in Ambanja (Madagascar), Luanda (Angola), and Kinshasa (DR Congo), in two public and two private schools in each country (details in online supplement). Angola and DR Congo are mainly populated by genetically quite homogenous ethnic groups of Bantu west-central African origin (34, 35). The Malagasy population shows a combination of morphological and cultural traits typical of Bantu and Austronesians (36, 37). We collected data in the northwestern coastal area of Madagascar, inhabited by Sakalava people, a negroid group with prevalent “African features” but mixed Bantu-Austronesian genetic background (37).

Logistic limitations precluded enrolling children not attending school. Children from Angola and DR Congo lived in urban areas with high levels of indoor and outdoor air pollution (29), and Malagasy children were from a semiurbanized area with less outdoor air pollution.

Children with respiratory symptoms (i.e., cough, coryza) or suspected fever on the test day were excluded. The PI evaluated the presence of symptoms and performed cardiac auscultation before the spirometric test. Also, children with current asthma or known chronic conditions likely to influence lung function or spirometry performance (e.g., congenital heart disease, mental retardation, previous tuberculosis) were excluded. Current asthma was defined as the occurrence of at least one episode of wheezing or whistling in the chest in the last 12 months (38). This information was obtained from the children and their teachers. A local investigator performed the interview in the local first language and explained the meaning of the questions. Teachers were also asked if they were aware of any relevant chronic disease in the pupils.

Assessments
Age was recorded with one decimal accuracy. Weight and sitting height were measured using the same protocol and instruments (additional details are available in the online supplement). The Cormic index was calculated as the sitting height/height ratio.

z-Scores for BMI (zBMI) and height (zHeight) were derived as a function of age for boys and girls using the lambda-mu-sigma parameters available from the CDC and World Health Organization websites (39, 40). “Thinness,” defined as zBMI less than −2, was considered as a marker of
malnutrition. Stunted growth was defined as zHeight less than −2. For the purpose of this study, the presence of thinness or public school attendance were considered as pointers to lower SES.

All studies were performed with a Pony FX spirometer (Cosmed, Rome, Italy), which meets American Thoracic Society/European Respiratory Society (ATS/ERS) requirements (41). The principal investigator performed all the spirometric tests in the classrooms. Children performed two up to seven forced expiratory maneuvers standing upright with nose clip in situ. Data were included if there were at least two forced expiratory maneuvers meeting the ATS/ERS acceptability and repeatability criteria (41) as modified for children by Kirkby and colleagues (42), with a normally shaped flow-volume curve. All spirometry data were subjected to independent quality control by two different investigators experienced in spirometry.

The Bayesian information criterion was used to select the most parsimonious model. Goodness of fit was checked by inspection of Q-Q plots and worm plots (i.e., detrended Q-Q plots, which highlight departure from normality). In some analyses, residuals represented z-scores greater than ±4; because the analyses are sensitive to outliers, these were removed. Penalized β-splines were used to obtain smoothly changing curves over the entire age range. Separate models were developed for boys and girls. Models were also developed for height as a function of age, country of residence, and zBMI. Group differences were assessed by t tests, analysis of variance, Tukey’s honestly significant difference test, and the Mantel-Haenszel chi-squared test for stratified tables. In the case of multiple testing, we controlled for a false discovery rate (46); otherwise, a P value < 0.05 was adopted as representing a statistically significant difference.

Statistical Analyses
We sampled more than 150 boys and 150 girls in each country, more than needed to validate spirometric reference equations for each country (43). Spirometric variables from these children and from black American peers (6–13 yr) from the NHANES III study were converted to z-scores according to the GLI-2012 equations for African Americans, using the GLI-2012 software (http://www.ers-education.org/guidelines/global-lung-function-initiative/tools.aspx). Reference equations were derived with the lambda-mu-sigma method using the GAMLSS package (version 4.3–6) (44) and the statistical software R (version 3.2.2; The R Project for Statistical Computing, www.r-project.org), adopting the Box–Cox–Cole–Green distribution (45) or normal distribution. Models tested included an age spline and log transformations of spirometric index, age, and height. The general form of the model was:

\[Y = a + b \times \text{height} + c \times \text{age} + d \times \text{variable} + \text{age-spline}, \]

where \(Y \) was the spirometric index; variable could be Cormic index, zBMI, sitting height, or country in which data had been collected; and \(a, b, c, \) and \(d \) were regression coefficients. Models were developed for boys and girls with both untransformed and log-transformed \(Y \), height, and age.

The Bayesian information criterion was used to select the most parsimonious model.

Results
In total, 1,328 children were enrolled. After exclusions, results from 1,082 subjects (mean ± SD age of 9.3 ± 1.7 yr, 51.9% boys) from Angola (n = 306), DR Congo (n = 377), and Madagascar (n = 399) were analyzed (Figure 1). Sex and age distributions were grossly comparable in the different countries (Table 1). Overall, 60% of children attended private schools (Table 1; see Table E1 in the online supplement).

Anthropometric Results
Children in the present study were younger and smaller than African American peers from NHANES III (Table 2). Malagasy children showed the lowest stature and BMI, and they had a relatively larger trunk, as indicated by the highest Cormic index (Table 1, Figure E1).
Table 1. Population Characteristics and Lung Function in Children from Angola, Democratic Republic of the Congo, and Madagascar

<table>
<thead>
<tr>
<th>Boys, %</th>
<th>Angola (n = 306)</th>
<th>DR Congo (n = 377)</th>
<th>Madagascar (n = 399)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In school</td>
<td>50</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>Age, yr</td>
<td>9.8 (1.9)</td>
<td>9.5 (1.6)</td>
<td>8.7 (1.5)</td>
</tr>
<tr>
<td>Sitting/standing height</td>
<td>0.48 (0.04)*</td>
<td>0.50 (0.02)*</td>
<td>0.52 (0.02)*</td>
</tr>
<tr>
<td>zHeight</td>
<td>-0.28 (1.30)*</td>
<td>0.32 (1.30)*</td>
<td>-1.22 (1.13)*</td>
</tr>
<tr>
<td>zBMI</td>
<td>-0.64 (2.16)*</td>
<td>-0.20 (1.10)*</td>
<td>-1.07 (1.08)*</td>
</tr>
<tr>
<td>zFVC</td>
<td>-0.32 (0.74)*</td>
<td>-0.16 (0.79)*</td>
<td>0.10 (0.88)*</td>
</tr>
<tr>
<td>zFVC/zBMI</td>
<td>-0.38 (0.80)*</td>
<td>-0.09 (0.83)*</td>
<td>0.16 (0.84)*</td>
</tr>
<tr>
<td>zFVC/FVC</td>
<td>0.10 (0.78)*</td>
<td>-0.17 (0.71)</td>
<td>-0.10 (0.95)*</td>
</tr>
</tbody>
</table>

Definition of abbreviations: BMI = body mass index; DR Congo = Democratic Republic of the Congo; zBMI = z-score for BMI; zFVC = z-score for FVC; zFVC/zBMI = z-score for FVC/BMI; zFVC/FVC = z-score for FVC/FVC; zHeight = z-score for height.

Table 2. Anthropometric z-Scores and Lung Function in African American Children and sub-Saharan African Peers from Angola, Democratic Republic of the Congo, and Madagascar

<table>
<thead>
<tr>
<th>African Americans NHANES III Study (n = 837)</th>
<th>African Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys, %</td>
<td>51</td>
</tr>
<tr>
<td>Age, yr</td>
<td>10.4 (1.3)</td>
</tr>
<tr>
<td>zHeight</td>
<td>0.71 (1.50)</td>
</tr>
<tr>
<td>zBMI</td>
<td>0.21 (1.11)</td>
</tr>
<tr>
<td>Cormanix index</td>
<td>0.50 (0.014)</td>
</tr>
<tr>
<td>zFVC</td>
<td>0.03 (1.06)</td>
</tr>
<tr>
<td>zFVC</td>
<td>0.08 (1.05)</td>
</tr>
<tr>
<td>zFVC/FVC</td>
<td>-0.07 (1.12)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: BMI = body mass index; NHANES = National Health and Nutrition Examination Survey; zBMI = z-score for BMI; zFVC = z-score for FVC; zFVC/zBMI = z-score for FVC/BMI; zFVC/FVC = z-score for FVC/FVC; zHeight = z-score for height.

This correlated negatively with zBMI (P < 0.01). Thinness was observed in 15.5% of boys and 11.6% of sub-Saharan children. 2.5% of boys had combined stunted growth and thinness (Figure E2). There were large differences in nutritional status between individuals in Angola, as evidenced by the large SD for zBMI (Table 1).

Comparison of the Three African Countries
There was wide overlap of spirometric data (Figure 3) with a slight negative trend of z-scores with age (lowest P = 0.015, Figure 3) for FEV₁ and FVC in Angolan and Congolese children; the FEV₁/FVC ratios in the three countries were unrelated to age (lowest P = 0.153). The scatter in the z-scores (indicated by the SD) of all spirometric indices was appreciably smaller than 1, pointing to great homogeneity in lung function in each of the populations (Table 1). Due to the small SD, the fifth centile for spirometric indices in the collated data was not at a z-score of −1.64, but at −1.30 in boys and −1.50 in girls. After adjusting for sex, age, and height, FEV₁ and FVC were largest in Malagasy and lowest in Angolan children (Table 1). The z-scores for FEV₁ and FVC differed systematically between countries (AOV, P < 0.0001). The z-scores for FVC and FEV₁/FVC were marginally smaller in public than in private school children (P = 0.035, explained variance 0.3%, data not shown).

Spirometric Outcomes in Relation to Body Proportions in African Children
Cormic index contributed significantly (P < 0.03 in boys, P < 0.001 in girls) to explaining differences in FEV₁ and FVC in African children. Z-scores for FEV₁ and FVC correlated positively with zBMI (P < 0.0001) but not with the Cormic index (P > 0.09). Disparities in nutritional status contributed 1.3 to −1.6% per unit of zBMI to between-subject differences in FEV₁ and FVC (Table 3). Thin African children (zBMI < −2) had a 4.5% lower FEV₁ (−0.41 z-score units) and 5.4% lower FVC (−0.49 z-score units) than normotrophic ones (P < 0.0001), but the FEV₁/FVC ratio...
Discussion

This is the first study assessing the applicability of GLI-2012 reference values for African Americans in children and adolescents from various sub-Saharan countries. It also evaluated the effects of impaired nutritional status on lung function. The findings confirm previous observations that differences in FEV₁ and FVC between groups of healthy subjects are proportional, as evidenced by a comparable FEV₁/FVC ratio (1, 20–22, 47–49). This can be expected, because humans have the same lung design, so that in healthy subjects differences in lung volumes reflect differences in chest size (50). Conventionally, stature is used as a proxy for lung volumes, but this does not consider diversity in body frame. This is illustrated

![Figure 2.](image)

Figure 2. Spirometry data, adjusted for sex, age, and height according to Global Lung Function Initiative 2012 equations for African Americans (1), in black American children from the NHANES (National Health and Nutrition Examination Survey) III study and children from Angola, Democratic Republic of the Congo, and Madagascar (Africans). Solid lines indicate mean values. Dashed lines delineate the 90% confidence intervals. Thin African children had a BMI z-score < -2 according to CDC growth charts (39).

![Figure 3.](image)

Figure 3. Distribution of z-scores for FEV₁, FVC, and the FEV₁/FVC ratio as a function of age in boys (upper panels) and girls (lower panels) applying Global Lung Function Initiative 2012 predicted values for African Americans. Dashed lines indicate the fifth and 95th centiles at ±1.64 z-scores.
by the biologically plausible pattern shown in this study where disparities in body frame affect the comparisons between African countries. Children with the lowest BMI were shorter and had relatively shorter legs (i.e., larger Cormic index), hallmarks of adverse conditions during childhood (26). Their FEV₁ and FVC were proportionally smaller, as shown by a normal FEV₁/FVC ratio (Figure 2); this implies that there is no respiratory impairment but that growth retardation leads to smaller chest dimensions, which are not properly accounted for by stature as a proxy for lung size. This study showed that this even holds true in the case of overt malnutrition.

There were small, albeit statistically significant, differences in lung function indices between different African countries. Differences of the magnitude found in this study may occur if the sample size is small (43). Although ethnic heterogeneity might also play a role, this is unlikely for children from Angola and DR Congo. Both countries are mainly inhabited by Bantu-speaking groups who migrated from grass field regions between Cameroon and Nigeria around 5,000 years ago (34). Studies on uniparentally transmitted mitochondrial DNA and Y-chromosome variation in these populations show that they are genetically quite homogeneous, with little genetic mixing with other groups (34, 35). The Malagasy population comprises a mix of people of Austronesian ancestry, who inhabit mainly the central highlands, and Bantu immigrants from East Africa, who prevail in the coastal area (36, 37). We studied children from the coastal area, but some genetic Bantu-Austronesian mixing is present in all Malagasy ethnic groups (37). Children from Madagascar had the highest Cormic index (Table 1), and, in spite of heterogenic ethnic background, they show the best fit to GLI-2012 black prediction equations (Table 1). A recent study (11) demonstrated that predicted values for African Americans fit the adult Austronesian inhabitants of Madagascar. This study provides further evidence that the GLI-2012 predicted values are applicable in subjects with predominant Bantu ancestry across sub-Saharan Africa. Overall, in view of the widely overlapping distributions (Figure 3), it seems justified to collate the data from the three countries.

Lung Function in African versus African American Children and the Impact of Malnutrition

After excluding African children with poor nutritional status (zBMI < −2), spirometry outcomes in the African children are fully comparable to those in African American peers and fit GLI-2012 predicted values. Our findings are consistent with some previous reports in adults (10, 11) and children (12) from sub-Saharan Africa, which found comparable dynamic lung volumes in healthy African and black American subjects. In view of the large differences in average level of influence, healthcare access, and exposure to air pollution between African American children and their peers in sub-Saharan Africa, the results of this study highlight the predominant role of genetic background rather than environment in determining lung function (27). The gross domestic product converted to international dollars using purchasing power parity rates in DR Congo is 1.5%, in Madagascar 2.6%, and in Angola 14.5% of that in the United States (51), with income being very unevenly distributed. The poor conditions are reflected in the large percentages of thin children (Table 2, Figure E2) with low stature and low leg length, hallmarks of insufficient growth (26). Growth retardation is associated with smaller chest dimensions, as indicated by the proportionally reduced FEV₁ and FVC. Recently, Sonnappa and colleagues (21) made similar observations. They found that spirometric outcomes in UK-Indian children were very similar to those in well-nourished urban Indian children, whereas the semiurban and rural Indians had significant but proportional reductions of FEV₁ and FVC, associated with a much lower BMI. It follows that well-nourished children with common genetic ancestry living in developing and developed countries appear to have comparable lung function.

z-Scores, which indicate how many SDs a measurement differs from the predicted value, used in this study, have the advantage that they are free of bias related to height, age, sex, and ethnicity, unlike percent predicted. In the case of a perfect fit of predicted values to a dataset, the standard deviation of *z*-scores should be one unit. In the studied children, it is consistently smaller (Table 1), indicating that there is greater homogeneity in this population than in African American boys and girls from the NHANES III study, in whom there is greater variability than expected (i.e., SD of spirometric *z*-scores > 1, Table 2). Unlike in Africa, there is considerable mixture of African and European genes in African Americans (13, 14), which might explain these striking differences.

A limitation of this study is that it included only schoolchildren. Each of these countries has public and private schools, but many parents cannot afford the school fees.

Table 3. Regression Coefficients of Relationship between FEV₁ and FVC and Explanatory Variables, Including Country of Residence (Angola as Reference), in sub-Saharan African Children

<table>
<thead>
<tr>
<th></th>
<th>Boys (n = 552)</th>
<th></th>
<th>Girls (n = 530)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>P Value</td>
<td>Estimate</td>
<td>P Value</td>
</tr>
<tr>
<td>ln(FEV₁)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−10.1164</td>
<td><0.0001</td>
<td>−9.9448</td>
<td><0.0001</td>
</tr>
<tr>
<td>ln(Height)</td>
<td>2.1293</td>
<td><0.0001</td>
<td>2.0656</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age</td>
<td>0.0129</td>
<td>0.0002</td>
<td>0.0201</td>
<td><0.0001</td>
</tr>
<tr>
<td>DR Congo</td>
<td>−0.0033</td>
<td>0.7744</td>
<td>0.0216</td>
<td>0.0727</td>
</tr>
<tr>
<td>Madagascar</td>
<td>0.0312</td>
<td>0.0001</td>
<td>0.0527</td>
<td><0.0001</td>
</tr>
<tr>
<td>zBMI</td>
<td>0.0142</td>
<td><0.0001</td>
<td>0.0125</td>
<td><0.0001</td>
</tr>
<tr>
<td>ln(FVC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−10.4813</td>
<td><0.0001</td>
<td>−10.4753</td>
<td><0.0001</td>
</tr>
<tr>
<td>ln(Height)</td>
<td>2.2289</td>
<td><0.0001</td>
<td>2.1986</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age</td>
<td>0.0124</td>
<td>0.0029</td>
<td>0.0162</td>
<td>0.0002</td>
</tr>
<tr>
<td>DR Congo</td>
<td>0.0189</td>
<td>0.0931</td>
<td>0.0353</td>
<td>0.031</td>
</tr>
<tr>
<td>Madagascar</td>
<td>0.0463</td>
<td><0.0001</td>
<td>0.0667</td>
<td><0.0001</td>
</tr>
<tr>
<td>zBMI</td>
<td>0.0157</td>
<td><0.0001</td>
<td>0.0138</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Defined of abbreviations: BMI = body mass index; DR Congo = Democratic Republic of the Congo; ln = natural logarithm; zBMI = *z*-score for BMI.

Differences in zBMI contribute 1.3 to 1.6% per unit zBMI to differences in FEV₁ and FVC between subjects.
leading to school attendance rates as low as 60%, with many children not completing primary school and also some overrepresentation of boys (52–54). Therefore, this study has not covered the full spectrum of SES in these countries. Children not attending school belong to the poorest segment of the population and are at higher risk of impaired nutritional status and exposure to indoor air pollution, factors that can affect lung function. Another limitation is that we could not investigate the level of exposure to outdoor and indoor pollution and how this affected spirometry outcomes. The smaller scatter (i.e., between-person variability) in the present study and associated shift of the lower limit of normal above the fifth centile compared with GLI-2012 may be a chance finding due to limited sample size (43) and needs confirmation in other sub-Saharan African populations.

A strength of this study is that data collection was performed in three countries by the PI, applying the same selection criteria, using identical equipment, and adopting the same quality control procedures, in accordance with ATS/ERS recommendations. In addition, the study covers the full age range of primary school in these countries.

Future Directions
To create robust spirometry prediction equations for all sub-Saharan African populations, future studies comprising at least 300 healthy male and female subjects (43) should explore the applicability of GLI-2012 predicted values in other African countries. Studies should preferably cover the entire age range and look into the role of SES and indoor and outdoor air pollution on lung function. Malnutrition and stunting affect somatic development and hence the relationship between stature and lung volumes; they should therefore be taken into account. The measurement of sitting and standing height may be useful for detecting differences in body frame that might cause differences in pulmonary function between ethnic groups.

Conclusions
GLI-2012 reference values for spirometry are appropriate for healthy, well-nourished African children attending school in Angola, DR Congo, and Madagascar, but the lower limit of normal may need adjustment. Lung function in well-nourished African pupils was fully comparable to that of African American peers from NHANES III. Growth retardation due to malnourishment accounts for smaller but normally developed lungs in healthy children. In well-nourished children, genetic background predominates over environment in determining lung function.

Author disclosures
are available with the text of this article at www.atsjournals.org.

Acknowledgment
The authors thank Mario Alessandro Bonetti and Mislav Dadic (Campus Biomedico University of Rome), Placido Curró (University of Trieste), Marco Driutti (University of Udine), Bobo Kintene (Centre de Formation et d’Appui Sanitaire - CEFA/Monkole Hospital, Kinshasa), Mattia Guerra (Udine), Tontop Muanani (Université Technologque Bol Campus, Kinshasa), and Luca Varacasa (University of Sassari) for their help with this study.

References

Conclusions
GLI-2012 reference values for spirometry are appropriate for healthy, well-nourished African children attending school in Angola, DR Congo, and Madagascar, but the lower limit of normal may need adjustment. Lung function in well-nourished African pupils was fully comparable to that of African American peers from NHANES III. Growth retardation due to malnourishment accounts for smaller but normally developed lungs in healthy children. In well-nourished children, genetic background predominates over environment in determining lung function.

Author disclosures
are available with the text of this article at www.atsjournals.org.

Acknowledgment
The authors thank Mario Alessandro Bonetti and Mislav Dadic (Campus Biomedico University of Rome), Placido Curró (University of Trieste), Marco Driutti (University of Udine), Bobo Kintene (Centre de Formation et d’Appui Sanitaire - CEFA/Monkole Hospital, Kinshasa), Mattia Guerra (Udine), Tontop Muanani (Université Technologque Bol Campus, Kinshasa), and Luca Varacasa (University of Sassari) for their help with this study.

References

AUTHOR QUERIES

New Information for the ATS Journals
We are glad to inform you that most of the author-supplied artwork will now be redrawn in the new journal style.
Please check text, labels, and legends for accuracy and completeness. Check that colors noted in the figure legend match the colors in the figure and in the text of the article.

QA1 If you provided an ORCID ID at submission, please confirm that it appears correctly on the opening page of this article. If you or your coauthors would like to include an ORCID ID in this publication, please provide it with your corrections. If you do not have an ORCID ID and would like one, you can register for your unique digital identifier at https://orcid.org/register.

1 AU: Are “Vanda” and/or "Loa" part of the author’s last name?

2 AU: Affiliation 2 is named differently in the Acknowledgment at the end of the article: "Campus Biomedico University of Rome" and not "Univerity Campus Bio-Medico" as it is here. Please check both for accuracy and standardize. Is the International Health Cooperation Project (affiliation 2) part of the University of Rome? If yes, it will be grouped together with affiliation 3 per journal style.

3 AU: Please confirm that affiliation # 3 is located in Trieste.

4 AU: Affiliation 7 had two departments which have been separated into two, per journal style. Please verify edits.

5 AU: In Author Contributions, please specify at each use of "M.A." which author is meant - M. Arigliani or M. Altomare.

6 AU: Please spell out AOUD in Correspondence note, and please check the postal address for accuracy. Should it read "Piazzale S. Maria Misericordia 1" instead of "P.zzale"? The address can be either in Italian or English, but please use only one language.

7 AU: Please spell out AOV at single use. Is it analysis of variance?

8 AU: For reference 29, please provide, if possible, created/updated/revised date(s).

9 AU: Per journal style, references 31 and 51 were added to the reference list (instead of listing the url in text), and subsequent references renumbered; please check carefully.

10 AU: For reference 31, please provide date accessed and, if possible, created/updated/revised date(s).

11 AU: For reference 40, please provide, if possible, created/updated/revised date(s).

12 AU: For reference 51, please provide date accessed and, if possible, created/updated/revised date(s).

13 AU: Multiple URLs in reference 52 (originally #50) were broken out into three separate references; please check.

14 AU: For references 52, 53, and 54 please provide, if possible, created/updated/revised date(s).

15 AU: Tables 1 and 2: Please check definitions added.